148 research outputs found

    Lectures on Linear Stability of Rotating Black Holes

    Full text link
    These lecture notes are concerned with linear stability of the non-extreme Kerr geometry under perturbations of general spin. After a brief review of the Kerr black hole and its symmetries, we describe these symmetries by Killing fields and work out the connection to conservation laws. The Penrose process and superradiance effects are discussed. Decay results on the long-time behavior of Dirac waves are outlined. It is explained schematically how the Maxwell equations and the equations for linearized gravitational waves can be decoupled to obtain the Teukolsky equation. It is shown how the Teukolsky equation can be fully separated to a system of coupled ordinary differential equations. Linear stability of the non-extreme Kerr black hole is stated as a pointwise decay result for solutions of the Cauchy problem for the Teukolsky equation. The stability proof is outlined, with an emphasis on the underlying ideas and methods.Comment: 25 pages, LaTeX, 3 figures, lectures given at first DOMOSCHOOL in July 2018, minor improvements (published version

    Combustion in thermonuclear supernova explosions

    Full text link
    Type Ia supernovae are associated with thermonuclear explosions of white dwarf stars. Combustion processes convert material in nuclear reactions and release the energy required to explode the stars. At the same time, they produce the radioactive species that power radiation and give rise to the formation of the observables. Therefore, the physical mechanism of the combustion processes, as reviewed here, is the key to understand these astrophysical events. Theory establishes two distinct modes of propagation for combustion fronts: subsonic deflagrations and supersonic detonations. Both are assumed to play an important role in thermonuclear supernovae. The physical nature and theoretical models of deflagrations and detonations are discussed together with numerical implementations. A particular challenge arises due to the wide range of spatial scales involved in these phenomena. Neither the combustion waves nor their interaction with fluid flow and instabilities can be directly resolved in simulations. Substantial modeling effort is required to consistently capture such effects and the corresponding techniques are discussed in detail. They form the basis of modern multidimensional hydrodynamical simulations of thermonuclear supernova explosions. The problem of deflagration-to-detonation transitions in thermonuclear supernova explosions is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 24 pages, 4 figure

    Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-like Universe

    Full text link
    We expose the scenarios of primordial baryon-photon plasma evolution within the framework of the Milne-like universe models. Recently, such models find a second wind and promise an inflation-free solution of a lot of cosmological puzzles including the cosmological constant one. Metric tensor perturbations are considered using the five-vectors theory of gravity admitting the Friedmann equation satisfied up to some constant. The Cosmic Microwave Background (CMB) spectrum is calculated qualitatively.Comment: 20 page

    Rotational superradiant scattering in a vortex flow

    Get PDF
    When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance 1, 2, 3, 4. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% ± 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole 5, 6, 7, 8, 9, 10, as well as to hydrodynamics, due to the close relation to over-reflection instabilities 11, 12, 13

    Black Hole Models of Quasars

    Get PDF
    Observations of active galactic nuclei are interpreted in terms of a theoretical model involving accretion onto a massive black hole. Optical quasars and Seyfert galaxies are associated with holes accreting near the Eddington rate and radio galaxies with sub-critical accretion. It is argued that magnetic fields are largely responsible for extracting energy and angular momentum from black holes and disks. Recent studies of electron-positron pair plasmas and their possible role in establishing the emergent X-ray spectrum are reviewed. The main evolutionary properties of active galactic nuclei can be interpreted in terms of a simple model in which black holes accrete gas at a rate dictated by the rate of gas supply which decreases with cosmic time. It may be worth searching for eclipsing binary black holes in lower power Seyferts

    Small Scale Structure and High Redshift HI

    Get PDF
    Cosmological simulations with gas dynamics suggest that the Lyman-alpha forest is produced mainly by "small scale structure" --- filaments and sheets that are the high redshift analog of today's galaxy superclusters. There is no sharp distinction between Lyman-alpha clouds and "Gunn-Peterson" absorption produced by the fluctuating IGM -- the Lyman-alpha forest {\it is} the Gunn-Peterson effect. Lyman limit and damped Lyman-alpha absorption arises in the radiatively cooled gas of forming galaxies. At z 2−3z~2-3, most of the gas is in the photoionized, diffuse medium associated with the Lyman-alpha forest, but most of the {\it neutral} gas is in damped Lyman-alpha systems. We discuss generic evolution of cosmic gas in a hierarchical scenario of structure formation, with particular attention to the prospects for detecting 21cm emission from high redshift HI. A scaling argument based on the present-day cluster mass function suggests that objects with M_{HI} >~ 5e11 h^{-1} \msun should be extremely rare at z 3z~3, so detections with existing instruments will be difficult. An instrument like the proposed Square Kilometer Array could detect individual damped Lyman-alpha systems at high redshift, making it possible to map structure in the high redshift universe in much the same way that today's galaxy redshift surveys map the local large scale structure.Comment: 15 pages, latex w/ crckapb & epsf macros, ps figures; get ps version with all figures from ftp://bessel.mps.ohio-state.edu/pub/dhw/Preprints To appear in Cold Gas at High Redshift, eds. M. Bremer et al. (Kluwer, 1996

    Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene

    Full text link
    The remarkable electronic properties of graphene have fueled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor its electronic properties and to control its charge carriers. Here we show that a single atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunneling microscope (STM). The response of the conduction electrons in graphene to the local charge is monitored with scanning tunneling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime 6-11 where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states (DOS) within a disc centered on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary information. Nature Physics advance online publication, Feb 22 (2016

    Characteristic Energy of the Coulomb Interactions and the Pileup of States

    Get PDF
    Tunneling data on La1.28Sr1.72Mn2O7\mathrm{La_{1.28}Sr_{1.72}Mn_2O_7} crystals confirm Coulomb interaction effects through the E\sqrt{\mathrm{E}} dependence of the density of states. Importantly, the data and analysis at high energy, E, show a pileup of states: most of the states removed from near the Fermi level are found between ~40 and 130 meV, from which we infer the possibility of universal behavior. The agreement of our tunneling data with recent photoemission results further confirms our analysis.Comment: 4 pages, 4 figures, submitted to PR

    Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme

    Full text link
    We discuss the numerical solution of nonlinear parabolic partial differential equations, exhibiting finite speed of propagation, via a strongly implicit finite-difference scheme with formal truncation error O[(Δx)2+(Δt)2]\mathcal{O}\left[(\Delta x)^2 + (\Delta t)^2 \right]. Our application of interest is the spreading of viscous gravity currents in the study of which these type of differential equations arise. Viscous gravity currents are low Reynolds number (viscous forces dominate inertial forces) flow phenomena in which a dense, viscous fluid displaces a lighter (usually immiscible) fluid. The fluids may be confined by the sidewalls of a channel or propagate in an unconfined two-dimensional (or axisymmetric three-dimensional) geometry. Under the lubrication approximation, the mathematical description of the spreading of these fluids reduces to solving the so-called thin-film equation for the current's shape h(x,t)h(x,t). To solve such nonlinear parabolic equations we propose a finite-difference scheme based on the Crank--Nicolson idea. We implement the scheme for problems involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or spherically-symmetric three-dimensional currents) on an equispaced but staggered grid. We benchmark the scheme against analytical solutions and highlight its strong numerical stability by specifically considering the spreading of non-Newtonian power-law fluids in a variable-width confined channel-like geometry (a "Hele-Shaw cell") subject to a given mass conservation/balance constraint. We show that this constraint can be implemented by re-expressing it as nonlinear flux boundary conditions on the domain's endpoints. Then, we show numerically that the scheme achieves its full second-order accuracy in space and time. We also highlight through numerical simulations how the proposed scheme accurately respects the mass conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements and corrections; to appear as a contribution in "Applied Wave Mathematics II
    • …
    corecore